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THE FLUX CONSERVATIVE FORM - Notation

Task

Use numerical methods to integrate an initial value system of equations in
fluz-conservative form:

du=-V-F_

once an appropriate set of Initial Data is provided.

u, F vectors of arbitrary dimension
u = u(r,t)
F=Fu2...) (conserved flux)



THE FLUX CONSERVATIVE FORM - Discretization
Finite Difference Techniques

The space-time domain is discretized, i.e. the functions u(r,t) are replaced
by their values on a grid of points. Taylor-expanding u(r, ¢) in terms of , and
Space and time derivatives are expressed in terms of differences between grid
points

This presentation:

e Fither a single PDE or a system of two;
e A single space dimension:
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EXPERIMENTS - The Equations

Equations

Forward Time Centered Space (FTUS) acheme
ADVECTION EQUATION: | d,u = —vdu | Lax-Friedrichs scheme

Methods of Lines

Iterative Crank-Nicholson (TCN) scheme

L.eapfrog scheme
WAVE EQUATION: | 0.1 = 20y u | { apirog



EXPERIMENTS - The Conditions
Initial Data and Boundary Conditions
All algorithms were tested on two types of Initial Data:

A. Periodic Initial Data: u;(z) = sin(kx);
B. Aperiodic Initial Data: u;(z) = exp(—(z — x)%/20?).

Periodic boundary conditions were used in all cases.



EXPERIMENTS - Convergence (and StabilityT)

Convergence tests

ut =u+ he, + ... 1st order convergence
- -5 54y 4= - h- - Q I
Richardson ansatz: uw'=u-+h €z T ... 2nd order convergence
uh =u+ hdﬁg +... 4th order convergence
||u4h' B ugh” 2 1=t order convergence
Q(ﬂ = 5 3 * 4 2nd order convergence
[u™ — ut]

16 Ath order convergence



EXPERIMEMNTS: the Advection Equation

FTCS

Second order in space, first order in time:

u’ . — yn
+1 7—1 2

du — —= + O(Ax
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Numerical errors disrupt convergence!



EXPERIMEMNTS: the Advection Equation

Lax-Friedrichs scheme: the role of numerical dissipation and
the CFL condition.

Exponentially growing modes in FTCS can be cured with the substitution:

1
uj — 5(’“&1 +uj )

Equivalent to an additional term:

d.u = —vout+o0,, u

e Numerical dissipation: The dissipation coefficient o = Ax?/2At affects
high-frequency modes more than low-frequency ones.

e Convergence: The Courant-Friedrichs-Lewy (CFL) condition holds: the
numerical domain must contain the causal one, or instabilities will arise.



EXPERIMENTS: the Advection Equation
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EXPERIMENTS: the Advection Equation




EXPERIMENTS: the Advection Equation
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EXPERIMENTS: the Advection Equation
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EXPERIMEMNTS: the Advection Equation

Higher order schemes: the Method of Lines using RK4

First discretize spatial variables only:

—ujt2(t) + 8(ujp1(t) — uj—1(t)) +uj-a(t)
12Ax

Ope = Dyy + O(Az*) — Dy, =

The advection equation turns into a system of ODEs for the N functions u,(t).

—Uj1a(t) + 8(ujt1(t) — uj_a(t) + uj—a(t)
12Ax

ﬂ.?’(i) =

The Runge-Kutta ODE solver can then integrate it to fourth order accuracy in
time.



EXPERIMEMNTS: the Wave Equation

Staggered-Leapfrog scheme: half time steps and self-consistent
initialization

. 9. ohr = v, s r = vd.u
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Initialization!



EXPERIMEMNTS: the Wave Equation

ICN: implicit to explicit through iteration

First iteration: ()
o i1 ki
uj = uj + At - pj
Wpt = p + At - §%u”

Second iteration:

2, n __ .. m At (1)1 Tl
R e g S L
Pf =1 + 55,2 07 (Y} +uff)

Third iteration:

{ “]u}’* — -u';."' + % (u];}?r_k p”'j
pj = b} + g 0°(Duf + )

Finally:



EXPERIMEMNTS: the Wave Equation
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SUMMARY

Summary

e One first-order and one second-order PDE discretized; solutions evolved,
starting from both periodic and aperiodic initial data;

o ['T'CS, Lax-Friedrichs, Leapfrog, ICN and MOL used;

e First, second (and fourth?) order convergence attained.



