

THE PENNSYLVANIA STATE UNIVERSITY DEPARTMENT OF PHYSICS

University Park, September 1st 2004

Summer Project: Introduction to Numerical Methods for Hyperbolic PDEs

Eloisa Bentivegna

Task

Use numerical methods to integrate an initial value system of equations in flux-conservative form:

$$\partial_t \mathbf{u} = -
abla \cdot \mathbf{F}$$

once an appropriate set of Initial Data is provided.

$$\left\{ \begin{array}{ll} \mathbf{u},\,\mathbf{F} & \text{vectors of arbitrary dimension} \\ \mathbf{u} \equiv \mathbf{u}(\mathbf{r},t) \\ \mathbf{F} \equiv \mathbf{F}(\mathbf{u},\frac{\partial \mathbf{u}}{\partial \mathbf{r}},\dots) \end{array} \right. \tag{conserved flux}$$

Finite Difference Techniques

The space-time domain is discretized, i.e. the functions $\mathbf{u}(\mathbf{r},t)$ are replaced by their values on a grid of points. Taylor-expanding $\mathbf{u}(\mathbf{r},t)$ in terms of , and Space and time derivatives are expressed in terms of differences between grid points

This presentation:

- Either a single PDE or a system of two;
- A single space dimension:

$$x_j = x_0 + j \Delta x$$
 $j = 0, 1, \cdots$
 $t_n = t_0 + n \Delta t$ $n = 0, 1, \cdots$
 $u(x, t) \rightarrow u_i^n$

Equations

$$\partial_x u = -v \partial_t u$$

WAVE EQUATION:

$$\partial_{xx}u=v^2\partial_{tt}u$$

 $\left\{egin{array}{l} ext{Leapfrog scheme}\ ext{Iterative Crank-Nicholson (ICN) scheme}\end{array}
ight.$

Initial Data and Boundary Conditions

All algorithms were tested on two types of Initial Data:

- **A.** Periodic Initial Data: $u_i(x) = \sin(kx)$;
- **B.** Aperiodic Initial Data: $u_i(x) = \exp(-(x-x_0)^2/2\sigma^2)$.

Periodic boundary conditions were used in all cases.

Convergence tests

Richardson ansatz:

$$u^h = u + he_1 + \dots$$
 1st order convergence $u^h = u + h^2e_2 + \dots$ 2nd order convergence $u^h = u + h^4e_4 + \dots$ 4th order convergence

$$Q(t) = \frac{\|u^{4h} - u^{2h}\|}{\|u^{2h} - u^h\|} \quad \to \quad \begin{cases} 2 & \text{1st order convergence} \\ 4 & \text{2nd order convergence} \\ 16 & \text{4th order convergence} \end{cases}$$

FTCS

Second order in space, first order in time:

$$\partial_x u \rightarrow \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} + \mathcal{O}(\Delta x^2)$$

$$\partial_t u \rightarrow \frac{u_j^{n+1} - u_j^n}{\Delta t} + \mathcal{O}(\Delta t)$$

$$u_j^{n+1} = u_j^n - \frac{v\Delta t}{2\Delta x}(u_{j+1}^n - u_{j-1}^n)$$

Numerical errors disrupt convergence!

Lax-Friedrichs scheme: the role of numerical dissipation and the CFL condition.

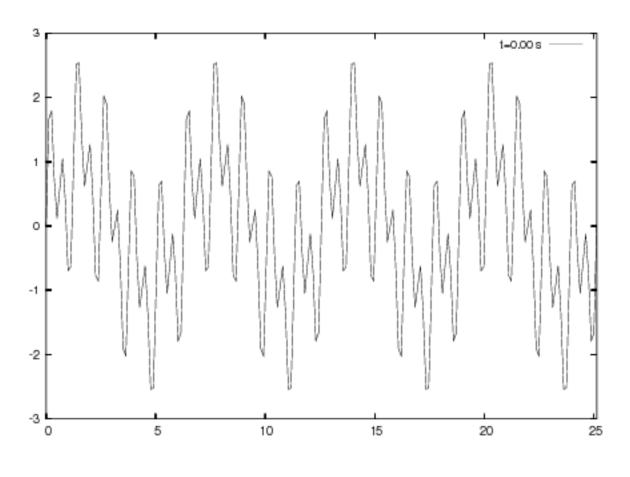
Exponentially growing modes in FTCS can be cured with the substitution:

$$u_j^n \to \frac{1}{2}(u_{j+1}^n + u_{j-1}^n)$$

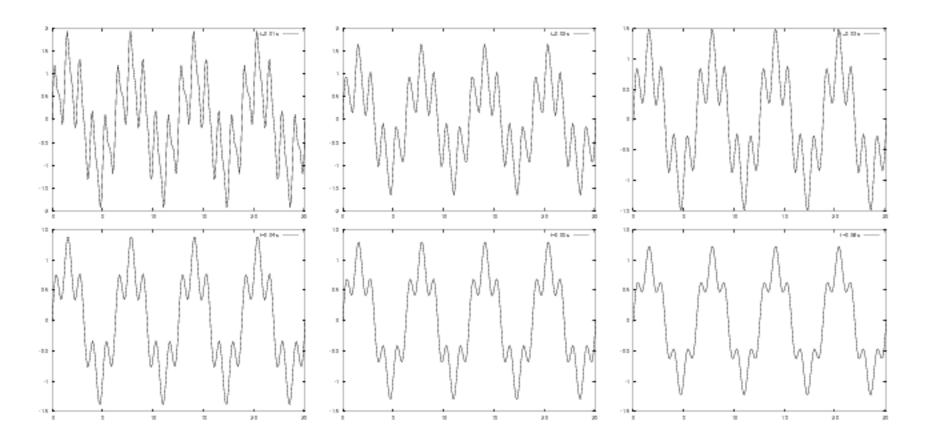
Equivalent to an additional term:

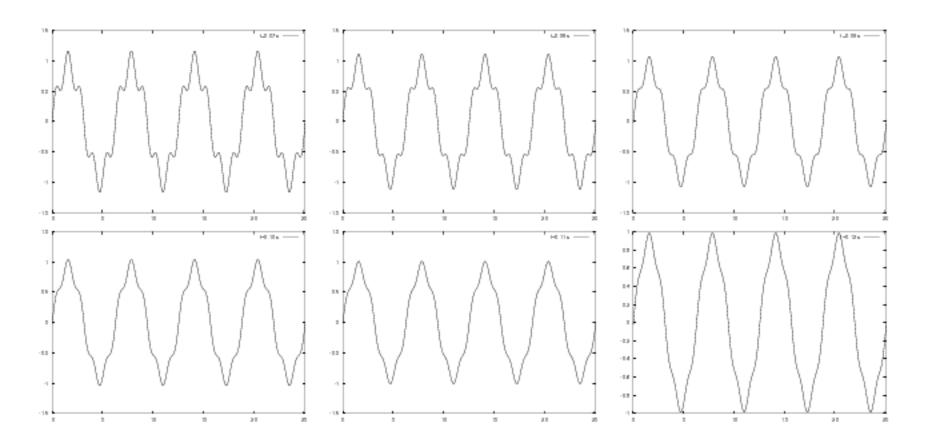
$$\partial_x u = -v\partial_t u + \sigma \partial_{xx} u$$

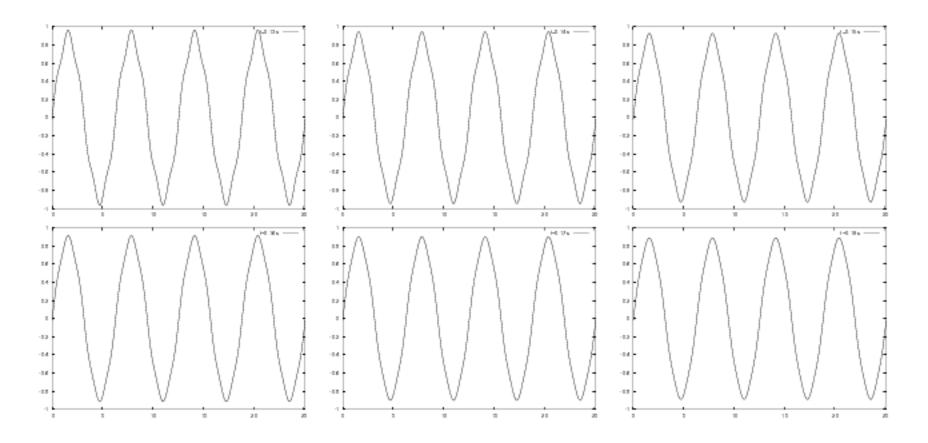
- Numerical dissipation: The dissipation coefficient $\sigma = \Delta x^2/2\Delta t$ affects high-frequency modes more than low-frequency ones.
- Convergence: The Courant-Friedrichs-Lewy (CFL) condition holds: the numerical domain must contain the causal one, or instabilities will arise.

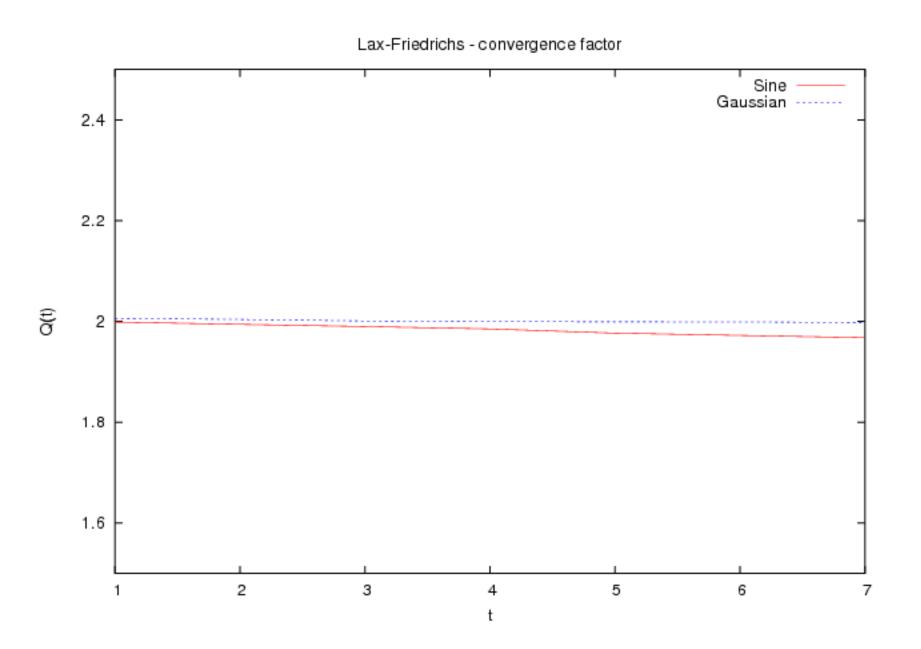


$$f(x) = \sin(\frac{2\pi}{5}x) + \sin(\frac{2\pi}{10}x) + \sin(\frac{2\pi}{50}x)$$









Higher order schemes: the Method of Lines using RK4

First discretize spatial variables only:

$$\partial_{xx} = D_{xx} + \mathcal{O}(\Delta x^4) \to D_{xx} = \frac{-u_{j+2}(t) + 8(u_{j+1}(t) - u_{j-1}(t)) + u_{j-2}(t)}{12\Delta x}$$

The advection equation turns into a system of ODEs for the N functions $u_j(t)$.

$$\dot{u}_j(t) = \frac{-u_{j+2}(t) + 8(u_{j+1}(t) - u_{j-1}(t)) + u_{j-2}(t)}{12\Delta x}$$

The Runge-Kutta ODE solver can then integrate it to fourth order accuracy in time.

Staggered-Leapfrog scheme: half time steps and self-consistent initialization

$$\partial_{tt}u = v^2 \partial_{xx}u \qquad \Longleftrightarrow \qquad \left\{ egin{array}{ll} \partial_t r = v \partial_x s \\ \partial_t s = v \partial_x r \end{array} \right. \qquad {
m where} \qquad \left\{ egin{array}{ll} r \equiv v \partial_x u \\ s \equiv \partial_t u \end{array} \right.$$

$$r_{j+1/2}^{n} = v \frac{u_{j+1}^{n} - u_{j}^{n}}{\Delta x}$$
 $s_{j}^{n+1/2} = \frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t}$

$$u_j^{n+1} = \lambda^2 (u_{j+1}^n + u_{j-1}^n + 2(1 - \lambda^2)u_j^n - u_j^{n-1})$$

$$\{\lambda \equiv v\Delta t/\Delta x\}$$

Initialization!

ICN: implicit to explicit through iteration

$$\partial_{tt}u = v^2 \partial_{xx}u \qquad \Longleftrightarrow \qquad \left\{ egin{array}{l} \partial_t u = p \\ \partial_t p = v^2 \partial_{xx}u \end{array} \right.$$

First iteration:

$$\begin{cases} {}^{(1)}u_j^n = u_j^n + \Delta t \cdot p_j^n \\ {}^{(1)}p_j^n = p_j^n + \Delta t \cdot \delta^2 u_j^n \end{cases}$$

Second iteration:

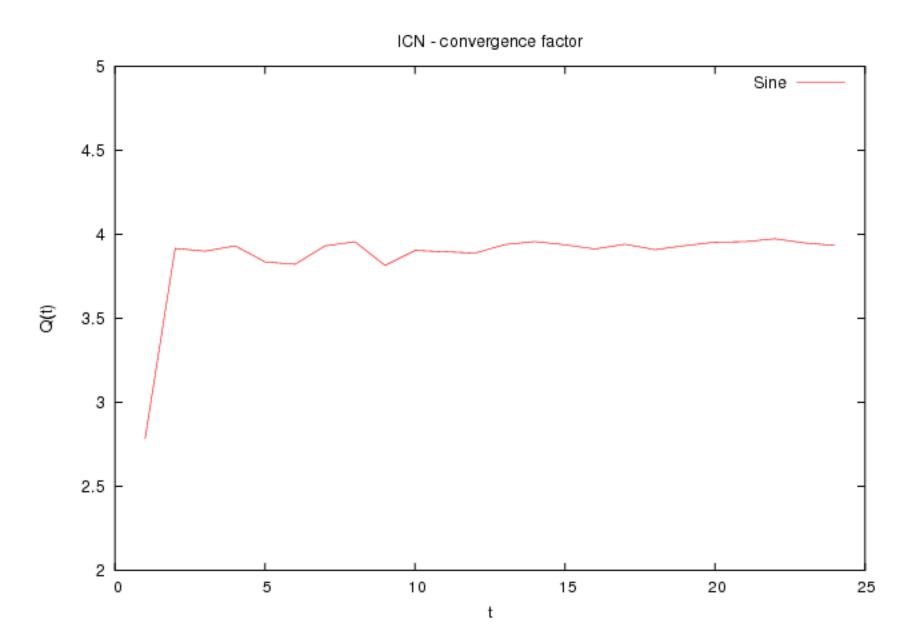
$$\begin{cases} {}^{(2)}u_{j}^{n}=u_{j}^{n}+\frac{\Delta t}{2}\left({}^{(1)}p_{j}^{n}+p_{j}^{n}\right)\\ {}^{(2)}p_{j}^{n}=p_{j}^{n}+\frac{\Delta t}{2\Delta x^{2}}\delta^{2}({}^{(1)}u_{j}^{n}+u_{j}^{n}\right) \end{cases}$$

Third iteration:

$$\left\{ \begin{array}{l} {}^{(3)}u_{j}^{n}=u_{j}^{n}+\frac{\Delta t}{2}({}^{(2)}p_{j}^{n}+p_{j}^{n})\\ {}^{(3)}p_{j}^{n}=p_{j}^{n}+\frac{\Delta t}{2\Delta x^{2}}\delta^{2}({}^{(2)}u_{j}^{n}+u_{j}^{n}) \end{array} \right.$$

Finally:

$$\begin{cases} u_j^{n+1} = {}^{(3)}u_j^n \\ p_j^{n+1} = {}^{(3)}p_j^n \end{cases}$$



Summary

- One first-order and one second-order PDE discretized; solutions evolved, starting from both periodic and aperiodic initial data;
- FTCS, Lax-Friedrichs, Leapfrog, ICN and MOL used;
- First, second (and fourth?) order convergence attained.