Black-hole lattices and inhomogeneous
dust: modelling the three-dimensional
universe with numerical relativity
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m?@ The Nobel Prize in Physics 2011
Saul Perimutter, Brian P. Schmidt, Adam G. Riess

Saul Perimutter Brian P. Schmidt Adam G. Riess

The Nobel Prize in Physics 2011 was divided, one half awarded to Saul
Perimutter, the other half jointly to Brian P. Schmidt and Adam G. Riess “for the
discovery of the accelerating expansion of the Universe through observations of
distant supernovae”.
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Supernova Cosmology Project
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Compilation

*Other evidence: Nichol (2008), Sarkar (2008), both in GRG special issue on Dark Energy
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ESTIMATING COSMIC DISTANCES

Distance through the spacetime’s optical pfoperties: apparent vs. actual
luminosity, apparent vs. actual size. (Need information on intrinsic properties of
objects!) |
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ESTIMATING COSMIC DISTANCES

Distance through the spacetime’s optical properties: apparent vs. actual
luminosity, apparent vs. actual size. (Need information on intrinsic properties of
objects!)

Supernova Cosmology Project
Suzuki, et al., Ap.J. (2011)

~ [No Big |}

Union2.1 SN la
Compilation

Assumptions on 1 4p!







DARK ENERGY

THE FITTING PROBLEM

Is this really new physics?

The fitting problem in cosmology (Ellis&Stoeger 1987): how should one
map observations in a lumpy universe to exactly homogeneous and
iIsotropic models, and what are the associated biases?

Global inhomogeneities:
e the cosmological principle is a reasonable, yet untestable ansatz.

Local inhomogeneities:
» modifications to global dynamics (the backreaction problem);
» modifications to optical properties.

Focus section on inhomogeneous cosmological models and averaging in
cosmology in Classical and Quantum Gravity, August 2011.



DARK ENERGY

THE AVERAGING FORMALISM

Two main approaches to modelling local inhomogeneities:
e Exact solutions
« General averaging scheme (scalars only!)

Main idea (Buchert&Ehlers 1997): define the average of a scalar field in the standard
way:

1 |
(A(t, X))p(t) = V—f A(t, X*)dp,
p Jp

Introduce a congruence of observers with four-velocity field u”a, and define its expansion
and shear (no rotation!):

Time evolution and averaging do not commute:

(A" — (A) = (A8) — (A)(6)




DARK ENERGY

THE AVERAGING FORMALISM

Volume and scale factor:

The averages satisfy equations similar to those that hold in FLRW models,
but with an extra contribution due to inhomogeneities:




DARK ENERGY

THE AVERAGING FORMALISM

Since the vector and tensor modes cannot be averaged, the system is not closed and
there are no equations for the evolution of ©p and VVp (closure relations, observations,
N-body simulations). Assuming a simple power-law scaling with the scale factor, one can
study the instability sectors of this system (Roy et al. 2011):

(n+2)Xp = —4Qp .

O — (n+2)Q% =2¢gp,

0P + 0P +QD =1,
QP = QP (2 — (n+2)02
02 = Q2 (QP — (n+2)Q%
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DARK ENERGY

THE AVERAGING FORMALISM
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COSMOTOOLKIT

Bridging the gap: construct 3D, exact solutions using the formalism and

tools of numerical relativity:
» Expressing Einstein’s equation as a system of PDEs suitable for numerical
integration
» Constructing initial data of cosmological relevance
« Carrying out the evolution explicitly

Currently tackling two classes of solutions:
* Regular lattices of black holes;
» Perfect fluid with inhomogeneities

Developing:
 Elliptic solver;
 Mesh refinement;
* Ray tracing and optical properties;

Marie Curie PIRG05-GA-2009-249290 (2010-2013)






NUMERICAL RELATIVITY

THE 3+1 DECOMPOSITION

In order to formulate Einstein’s equation as an initial-boundary value problem, one needs
to choose a time coordinate and project the equations accordingly; reducing the system
to first order form, one is left with twelve evolution four constraints equations:
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NUMERICAL RELATIVITY

THE 3+1 DECOMPOSITION

In order to formulate Einstein’s equation as an initial-boundary value problem, one needs
to choose a time coordinate and project the equations accordingly; reducing the system
to first order form, one is left with twelve evolution four constraints equations:

ds® = —a’dt* + ;;(dz’ + B'dt)(dz’ + 3 dt)

R+K?*— K ;K7 = 0
D,K!—D,K = 0

ag’}','j = —QG'K,'_, + D;"B_, -1 DJ_BZ

8,K;; = —D;D;a + a(R;; — 2K K} + KK,;) + B*DiK,; + K. D; 3" + K;; D, 3*



NUMERICAL RELATIVITY

THE EINSTEIN TOOLKIT

The Einstein Toolkit:
* Open-source toolkit;

« One code-generating ﬁ elnSTel
framework; ‘, ﬂ K
* Over one hundred @ O
components (evolution of WeLcome
the gravitational field and T e T e T
fluids, analysis of R -
spacetimes, |/0O); Download
* AMR capabilities; e b e et et
e Leveraging HPC systems
worldwide;

e Tutorials and demos for
new users — try it out!




NUMERICAL RELATIVITY

BLACK-HOLE SOLUTIONS

Black holes represent the most basic class of non-trivial, vacuum, exact solutions of
Einstein’s equation.

The most distinctive feature of these spacetimes is the presence of regions causally
disconnected with distant observers. As a norm, “trapped” surfaces will be part of these
spacetimes too, and provide a useful analysis tool because:

 They are local;

 They obey a few laws of black-hole mechanics.

In particular, one can associate meaningful definitions of mass and angular momentum to
these local structures.



and evolution, are thc
powerful gravitationa

Thanks to numerical relativity
the last ten years, with many

- Black-hole binaries
« Neutron-star binaries
« Mixed binaries
 Gravitational collapse
and supernovae
- Black holes surrounded
by accretion disks

- MPI for Gravitational Physics/W.Benger-ZIB

;!






BLACK-HOLE LATTICES

CONSTRUCTING A BLACK-HOLE LATTICE

Models studied by Lindquist&Wheeler (1957) and Clifton&Ferreira (2009-2011) via
embeddings of the Schwarzschild solution in uniform-curvature spaces.

Exact initial data: in order to solve the initial-boundary value problem in General

Relativity, one must specify a valid initial dataset, namely one that satisfies the Einstein
constraints:

2

. _ K 1~ -~
A¢—R¢—§¢5+§AMA”¢ =0

- .9 .
D;AY — gwﬁwDiK =0




BLACK-HOLE LATTICES

CONSTRUCTING A BLACK-HOLE LATTICE

Further constraint: if we assume the following form for the conformal factor:

M

p=1+—
:

then the extrinsic curvature and the scalar curvature cannot both be zero, otherwise:




BLACK-HOLE LATTICES

CONSTRUCTING A BLACK-HOLE LATTICE

Two options:
« Keep a zero extrinsic curvature, but choose a conformal metric that is not flat:

Note: the hamiltonian constraint is linear! One can use the superposition principle to
construct multi-black-hole solutions.

« Keep a flat conformal metric, but use a non-zero extrinsic curvature

Requires numerical integration.



BLACK-HOLE LATTICES

CONFORMALLY-S3 BLACK-HOLE LATTICES

Hamiltonian constraint:
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CONFORMALLY-S3 BLACK-HOLE LATTICES

Multiple black holes can be obtained by superimposing this fundamental solution. It is
convenient to embed this three-sphere in R4, and to express the solution in this
coordinate space:

The parameters Ai and the black-hole centers are arbitrary, but if one is interested in
regular lattices these have to be chosen carefully. In particular, the parametersAZ’have to
be the same, and the centers have to be equidistant from each other.



BLACK-HOLE LATTICES

THE REGULAR TESSELLATIONS OF S3

On a three-sphere, there is only a finite number of “regular” arrangements of points,
corresponding to the regular tessellations of S8. N can be equal to 5, 8, 16, 24, 120, 600.

4-simplex 4-orthoplex 4-cube
(5-cell) (16-cell) (8-cell, Tesseract)




BLACK-HOLE LATTICES

A STEREOGRAPHIC PROJ_ECTION FROM S8 ONTO R3S

Coordinate transformation to simplify numerical treatment:




BLACK-HOLE LATTICES

THE 8-BLACK-HOLE UNIVERSE

We have studied the 8-black-hole case and its full-GR evolution:
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THE 8-BLACK-HOLE UNIVERSE

Initial horizons:
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BLACK-HOLE LATTICES

THE 8-BLACK-HOLE UNIVERSE

Horizon properties:

Horizon 1

e The horizon mass
IS essentially
constant throughout
the evolution;

* Coordinate effects
render the horizons
harder and harder
to resolve as the
run progresses;

 The central horizon
exhibit a jump;

Horizon mass

100 120 140 160




BLACK-HOLE LATTICES

THE 8-BLACK-HOLE UNIVERSE

Horizon properties:

Horizon 2
e The horizon mass

Coarse : :

Medium IS essentially
constant throughout
the evolution;

e Coordinate effects
render the horizons
harder and harder
to resolve as the
run progresses;

 The central horizon
exhibit a jump;

Horizon mass

80 100 120 140 160
x/M
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Harder and harder to

1) Outward shift: la

| —
0.5 T, T M U G W

2) Horizon instability;



BLACK-HOLE LATTICES

THE 8-BLACK-HOLE UNIVERSE

Proper distance between horizons

Proper distance

Coarse
Medium

Horizon mass




BLACK-HOLE LATTICES

THE 8-BLACK-HOLE UNIVERSE

Proper distance between horizons

(Scaled) proper distance

Horizon mass
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INHOMOGENEOUS DUST

THE HYDRODYNAMICAL SYSTEM

From the conservation of the stress-energy tensor and the continuity equation, along with
an equation of state, one can derive the PDE systems governing the evolution of rest-
mass density and four-velocity.

v, T" =0,

ap _'!'_ 69(13 SQSH

- =0,

2 gz SO




INHOMOGENEOUS DUST

THE CONSTRAINTS

As usual, initial data needs to solve the constraints:

A o/ 2,/ K2'5 L & i -7 @ o, b
AY — Ry — ﬁw‘ + gfl,-J-AJw = —2mn*n"T,;

) |
D; AV — gz;';bf"y”DiK = —8rnT,’

Assume a pressureless perfect fluid:
Tap = puqup

then set7;, and Kij to the Einstein-deSitter solution and p to a perturbation of this
solution:

—Hgas(to)vi;
pEas(fo) + 0; sin(2mk,.z*)

Two runs: §; = 0.001and §; = 0.01 (in units where pgas(to) = 0.119366).
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INHOMOGENEOUS DUST

EVOLUTION OF THE DENSITY CONSTRAST




INHOMOGENEOUS DUST

EVOLUTION OF THE BACKREACTION TERM

8 10 12 14 16 18
a_f/a_i




INHOMOGENEOUS DUST

EVOLUTION OF THE CELL VOLUME

Inhomogeneous

Inhomogeneous




CONCLUSIONS AND PROSPECTS

Despite the large amount of proposals, type-la-supernova data remain
unexplained.

It is time to quantify the effect of averaging on the cosmological
parameters: numerical relativity can bridge the gap between exact models

and averaging schemes.

We have barely started to scratch the surface:

 Better initial data:
e Generic solver;
« Beyond the conformal scheme?

« Better control on the gauge used for the evolution:
» Dust approximation leads to singularities, can these be avoided?

e More realism:
« S3universes have an upper limit on the number of black holes — open three-

spaces will be more realistic;

e Scale span is tiny!



