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OVERVIEW

PART I: evidence and models for Dark Energy
• Estimating cosmic distances;
• Predicting cosmic distances;
• The cosmological constant and the alternatives; averaging.

PART II: Numerical Relativity and the Einstein Toolkit
• Building 3D solutions of Einsteinʼs equation;
• Black-hole solutions;
• The Einstein Toolkit.

PART III: black-hole lattices
• Setting up initial data;
• Evolution: apparent horizons, scaling of distances.

PART IV: inhomogeneous dust
• Setting up initial data
• Evolution: growth of density contrast, volume, backreaction.
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*Other evidence: Nichol (2008), Sarkar (2008), both in GRG special issue on Dark Energy



Distance through the spacetimeʼs optical properties: apparent vs. actual 
luminosity, apparent vs. actual size. (Need information on intrinsic properties of 
objects!)
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DARK ENERGY
THE COSMOLOGICAL CONSTANT PROBLEM

Whilst the cosmological-constant term is perfectly plausible, its value is 
suspicious:
• itʼs too small for vacuum energy density;
• itʼs strangely close to the energy density due to matter.

Solutions:
• Quintessence;
• Higher-derivative gravity and other alternative theories;
• Quantum-inspired scenarios.



DARK ENERGY
THE FITTING PROBLEM

Is this really new physics?

The fitting problem in cosmology (Ellis&Stoeger 1987): how should one 
map observations in a lumpy universe to exactly homogeneous and 
isotropic models, and what are the associated biases?

Global inhomogeneities:
• the cosmological principle is a reasonable, yet untestable ansatz.

Local inhomogeneities:
• modifications to global dynamics (the backreaction problem);
• modifications to optical properties.

Focus section on inhomogeneous cosmological models and averaging in 
cosmology in Classical and Quantum Gravity, August 2011.



Two main approaches to modelling local inhomogeneities:
• Exact solutions
• General averaging scheme (scalars only!)

Main idea (Buchert&Ehlers 1997): define the average of a scalar field in the standard 
way:

Introduce a congruence of observers with four-velocity field u^a, and define its expansion 
and shear (no rotation!):

Time evolution and averaging do not commute:

DARK ENERGY
THE AVERAGING FORMALISM

A A

σ2 ≡ 1

2
σijσ

ijθ ≡ ∇iu
i σij ≡ ∇iuj −

1

3
θγij



Volume and scale factor:

The averages satisfy equations similar to those that hold in FLRW models, 
but with an extra contribution due to inhomogeneities:

DARK ENERGY
THE AVERAGING FORMALISM



DARK ENERGY

Since the vector and tensor modes cannot be averaged, the system is not closed and 
there are no equations for the evolution of        and          (closure relations, observations, 
N-body simulations). Assuming a simple power-law scaling with the scale factor, one can 
study the instability sectors of this system (Roy et al. 2011):

QD WD

THE AVERAGING FORMALISM

XD ≡ QD +WD
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Bridging the gap: construct 3D, exact solutions using the formalism and 
tools of numerical relativity:
• Expressing Einsteinʼs equation as a system of PDEs suitable for numerical 

integration
• Constructing initial data of cosmological relevance
• Carrying out the evolution explicitly

Currently tackling two classes of solutions:
• Regular lattices of black holes;
• Perfect fluid with inhomogeneities

Developing:
• Elliptic solver;
• Mesh refinement;
• Ray tracing and optical properties;
• ...

Marie Curie PIRG05-GA-2009-249290 (2010-2013)

DARK ENERGY
COSMOTOOLKIT



PART II
NUMERICAL RELATIVITY AND THE 

EINSTEIN TOOLKIT
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In order to formulate Einsteinʼs equation as an initial-boundary value problem, one needs 
to choose a time coordinate and project the equations accordingly; reducing the system 
to first order form, one is left with twelve evolution four constraints equations:
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NUMERICAL RELATIVITY
THE EINSTEIN TOOLKIT

The Einstein Toolkit:
• Open-source toolkit;
• One code-generating 

framework;
• Over one hundred 

components (evolution of 
the gravitational field and 
fluids, analysis of 
spacetimes, I/O);

• AMR capabilities;
• Leveraging HPC systems 

worldwide;
• Tutorials and demos for 

new users — try it out!



NUMERICAL RELATIVITY
BLACK-HOLE SOLUTIONS

Black holes represent the most basic class of non-trivial, vacuum, exact solutions of 
Einsteinʼs equation.

The most distinctive feature of these spacetimes is the presence of regions causally 
disconnected with distant observers. As a norm, “trapped” surfaces will be part of these 
spacetimes too, and provide a useful analysis tool because:
• They are local;
• They obey a few laws of black-hole mechanics.

In particular, one can associate meaningful definitions of mass and angular momentum to 
these local structures.



NUMERICAL RELATIVITY
STATE OF THE ART

Black holes also play an important observational role, since they drive galactic activity 
and evolution, are thought to be at the core of a class of Gamma Ray Bursts, and are 
powerful gravitational-wave emitters when excited.

Thanks to numerical relativity, a number of these scenarios have been under scrutiny in 
the last ten years, with many more being actively pursued now:

• Black-hole binaries
• Neutron-star binaries
• Mixed binaries
• Gravitational collapse 

and supernovae
• Black holes surrounded 

by accretion disks

MPI for Gravitational Physics/W.Benger-ZIB



PART III
BLACK-HOLE LATTICES

WITH MIKOŁAJ KORZYN ́SKI



Models studied by Lindquist&Wheeler (1957) and Clifton&Ferreira (2009-2011) via 
embeddings of the Schwarzschild solution in uniform-curvature spaces.

Exact initial data: in order to solve the initial-boundary value problem in General 
Relativity, one must specify a valid initial dataset, namely one that satisfies the Einstein 
constraints:

Abstract

1 Introduction

The vast amount of large-scale observational data collected in recent decades
are shaping a generally coherent picture of our universe. This evidence has,
however, also opened a number of questions, the majority of which are related
to the nature of the dark sector.

Along with more exotic hypotheses entailing new fundamental matter con-
stituents and modified theories of gravity, the possibility that the current way
we model the inhomogeneous universe be too elementary (a possibility that has
been advanced several times in the past) has now resurfaced. In particular,
the question of how much cosmic inhomogeneities can dress the value of the
cosmological parameters is under scrutiny in a variety of approaches.

An interesting class of models that has recently been studied is that of regu-
lar lattices of black holes. These representations of our universe avoid the issues
related to the behavior of relativistic fluids (and, in particular, the correspond-
ing singularities); in [], it is also argued that they may represent a more realistic
picture of our universe, composed of a collection of pointlike object surrounded
by vacuum rather than a homogeneous and isotropic fluid with small-scale per-
turbations.

Collections of black holes also have the added benefit to be one of numerical
relativity’s routine application areas, from which formalisms, tools and prac-
tices can be readily imported. In this work, we construct the initial data and
simulate the evolution of a special sort of black hole lattices, those with extrin-
sic curvature that is initially zero. In section 2, we illustrate how to construct
initial data for a generic black-hole lattice based on the usual York-Lichnerowitz
framework. We then discuss a coordinate transformation that simplifies the nu-
merical treatment in section 3, and finally illustrate the details of the evolution
in section ??.

[TODO: The usual definition of black hole involves Scri+. Is it legit to use the

word here, or should we just say puncture?]

2 Constructing a periodic black-hole lattice

Given the standard 3+1 split of the metric tensor into the spatial metric γij and
extrinsic curvature Kij , initial data for the gravitational field can be generated
by solving the hamiltonian and momentum constraints, which in vacuum read:

R+K2 −KijK
ij = 0 (1)

DiK
i
j −DjK = 0 (2)

where R is the scalar curvature of the spatial metric and Di represents the
covariant derivative associated with γij . A powerful scheme to generate solu-
tions of this system, the conformal transverse-traceless framework, entails the
introduction of a conformal transformation in the spatial metric, along with the

1

separation of the extrinsic curvature into its trace K and traceless part Aij :

γij = ψ4 γ̃ij (3)

Kij =
K

3
γij +Aij (4)

In terms of these, the constraints take the form:

∆̃ψ − R̃ψ − K2

12
ψ5 +

1

8
ÃijÃ

ijψ−7 = 0 (5)

D̃iÃ
ij − 2

3
ψ6γ̃ijD̃iK = 0 (6)

∆̃ being the laplacian operator of the conformal metric γ̃ij , and Ãij being related
to Aij by Ãij = ψ2Aij .

Let us focus on the hamiltonian constraint. We would like to solve this
equation with the “puncture” ansatz for the conformal factor:

ψ =
M

r
(7)

[TODO: what is r?] and periodic boundary conditions. It can be easily proven,
then, that unlike in the asymptotically-flat case, if Kij and R are both zero,
then this is a slice of Minkowski spacetime. This becomes apparent if one
integrates both sides of equation 5 on the fundamental cell of the desired lattice
(see Figure ??):

0 =

�

V
∆̃ψ = −

�

Si

∆̃ψ +

�

So

∆̃ψ = −M (8)

which is only satisfied if M = 0. [TODO: I know this works if the metric is

conformally flat. Does it hold in general?]

Thus, for non-zeroM , there are at least two possibilities: a non-zero extrinsic
curvature or a non-zero spatial scalar curvature. In this work, we concentrate
on the Kij = 0 case, since the momentum constraint is trivally satisfied and the
hamiltonian constraint remains linear, and one can therefore construct multiple–
black-hole solution by superposition. We concentrate on the positive-R case,
where the spatial slices have the topology of S3. [TODO: In fact, they are

conformally S3. I think this is theorem, and we should cite it]

Notice that, whilst this argument strictly applies only to initial-data genera-
tion in the conformal transverse-traceless case, it is arguable that the additional
constraint due to the periodic requirement is quite a general feature.

2.1 Punctures on a 3–sphere

We consider puncture–like solutions of the hamiltonian constraint when γ̃ij and
R̃ are the metric tensor and scalar curvature of S3:

∆̃ψ − R̃

8
ψ = 0 (9)

We fix coordinates on S3 such that:

ds2 = dλ2 + sin2 λ
�
dθ2 + sin2 θ dϕ2

�
(10)
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ij − 2

3
ψ6γ̃ijD̃iK = 0 (6)

∆̃ being the laplacian operator of the conformal metric γ̃ij , and Ãij being related
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Further constraint: if we assume the following form for the conformal factor:

then the extrinsic curvature and the scalar curvature cannot both be zero, otherwise:

separation of the extrinsic curvature into its trace K and traceless part Aij :

γij = ψ4 γ̃ij (3)

Kij =
K

3
γij +Aij (4)

In terms of these, the constraints take the form:

∆̃ψ − R̃ψ − K2

12
ψ5 +

1

8
ÃijÃ

ijψ−7 = 0 (5)

D̃iÃ
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M

r

Si

So



Two options:
• Keep a zero extrinsic curvature, but choose a conformal metric that is not flat:

Note: the hamiltonian constraint is linear! One can use the superposition principle to 
construct multi-black-hole solutions.

• Keep a flat conformal metric, but use a non-zero extrinsic curvature

Requires numerical integration.
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Hamiltonian constraint:

Spatial metric given by:

Single-black-hole solution:
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ij − 2

3
ψ6γ̃ijD̃iK = 0 (6)

∆̃ being the laplacian operator of the conformal metric γ̃ij , and Ãij being related
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Let us imagine that the sphere is embedded in R4 with the equation
�
X1

�2
+

�
X2

�2
+
�
X3

�2
+
�
X4

�2
= 1; a bar over a capital letter denotes a vector in this

space.
A solution of equation 9 is given by:

φ(λ) =
A

sinλ/2
(11)

and others can be easily generated by superimposing N such punctures centered
at the locations N̄i ∈ S3:

φ(X̄) =
N�

i=1

Ai

sinλi/2
=

�

i

Ai

�
2

1− X̄ · N̄i
(12)

The parameters Ai > 0 measure the singular part of the solution at the points
N̄i: the leading part behaves like 2Ai/λi.

Notice that, if one seeks only the regular arrangements of black holes on
S3, there are only six possible values of N , corresponding to the six regular
tessellations of the three-sphere: N = 5, 8, 16, 24, 120, 600.

In the following, we concentrate on the 8–vertex, 16-cell solution, where the
puncture locations are given by:

N̄1 = (1, 0, 0, 0) , (13)

N̄2 = (−1, 0, 0, 0) , (14)

N̄3 = (0, 1, 0, 0), (15)

N̄4 = (0,−1, 0, 0), (16)

N̄5 = (0, 0, 1, 0) , (17)

N̄6 = (0, 0,−1, 0) , (18)

N̄7 = (0, 0, 0, 1), (19)

N̄8 = (0, 0, 0,−1). (20)

and all Ai = 1. The configuration has obviously the symmetry of a 16–cell.
In particular, it has a discrete group of symmetries generated by π/2 rotations
around all pairs of axes of R4.

1. rotation around X1, X4





X1

X2

X3

X4



 �→





1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1









X1

X2

X3

X4



 (21)




y1

y2

y3



 �→




1 0 0
0 0 1
0 −1 0








y1

y2

y3



 (22)

2. rotation around X2, X4





X1

X2

X3

X4



 �→





0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1









X1

X2

X3

X4



 (23)
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Multiple black holes can be obtained by superimposing this fundamental solution. It is 
convenient to embed this three-sphere in R4, and to express the solution in this 
coordinate space:

The parameters       and the black-hole centers are arbitrary, but if one is interested in 
regular lattices these have to be chosen carefully. In particular, the parameters      have to 
be the same, and the centers have to be equidistant from each other. 

Let us imagine that the sphere is embedded in R4 with the equation
�
X1

�2
+

�
X2

�2
+
�
X3

�2
+
�
X4

�2
= 1; a bar over a capital letter denotes a vector in this

space.
A solution of equation 9 is given by:

φ(λ) =
A

sinλ/2
(11)

and others can be easily generated by superimposing N such punctures centered
at the locations N̄i ∈ S3:

φ(X̄) =
N�

i=1

Ai

sinλi/2
=

�

i

Ai

�
2

1− X̄ · N̄i
(12)

The parameters Ai > 0 measure the singular part of the solution at the points
N̄i: the leading part behaves like 2Ai/λi.

Notice that, if one seeks only the regular arrangements of black holes on
S3, there are only six possible values of N , corresponding to the six regular
tessellations of the three-sphere: N = 5, 8, 16, 24, 120, 600.

In the following, we concentrate on the 8–vertex, 16-cell solution, where the
puncture locations are given by:

N̄1 = (1, 0, 0, 0) , (13)

N̄2 = (−1, 0, 0, 0) , (14)

N̄3 = (0, 1, 0, 0), (15)

N̄4 = (0,−1, 0, 0), (16)

N̄5 = (0, 0, 1, 0) , (17)

N̄6 = (0, 0,−1, 0) , (18)

N̄7 = (0, 0, 0, 1), (19)

N̄8 = (0, 0, 0,−1). (20)

and all Ai = 1. The configuration has obviously the symmetry of a 16–cell.
In particular, it has a discrete group of symmetries generated by π/2 rotations
around all pairs of axes of R4.

1. rotation around X1, X4





X1

X2

X3

X4



 �→





1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1









X1

X2

X3

X4



 (21)




y1

y2

y3



 �→




1 0 0
0 0 1
0 −1 0








y1

y2

y3



 (22)

2. rotation around X2, X4





X1

X2

X3

X4



 �→





0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1









X1

X2

X3

X4



 (23)
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On a three-sphere, there is only a finite number of “regular” arrangements of points, 
corresponding to the regular tessellations of S3. N can be equal to 5, 8, 16, 24, 120, 600.

BLACK-HOLE LATTICES
THE REGULAR TESSELLATIONS OF S3



Coordinate transformation to simplify numerical treatment:

BLACK-HOLE LATTICES
A STEREOGRAPHIC PROJECTION FROM S3 ONTO R3

xi

Xi

(X1, X2, X3, X4) → (x1, x2, x3) : xi =
2Xi

1−X4



new coordinates �y = (A1)2 �x. The projected conformal factor takes now the form
of

φ̃(�y) = 1 +
N�

i=2

2Ai A1

�
1 + | �Ni|2

4����y − �Ni

���
= (42)

= 1 +
N�

i=2

mi

2
����y − �Ni

���
(43)

with rescaled positions of the punctures �Ni = (A1)2 �ni. The mass parameters
of the punctures take the form of

mi = 4Ai A1

�

1 +
| �Ni|2
4

. (44)

The total ADM mass measured at infinity, corresponding to the infinity of
the black hole N̄1, is equal to

MADM
1 =

N�

i=2

mi = 4A1

N�

i=2

Ai

�

1 +
| �Ni|2
4

. (45)

It can also be expressed in terms of the original solution φ:

MADM
1 = 4A1

N�

i=1

Ai

�
2

1− N̄i · N̄1
(46)

If we project the 8–vertex solution 13 down to R3, it becomes an asymptot-
icaly flat configuration described by (43) with 7 punctures at points

�N2 = (0, 0, 0) , (47)

�N3 = (2, 0, 0), (48)

�N4 = (−2, 0, 0), (49)

�N5 = (0, 2, 0) , (50)

�N6 = (0,−2, 0) , (51)

�N7 = (0, 0, 2), (52)

�N8 = (0, 0,−2). (53)

and with mass parameters m2 = 4 and m3, . . . ,m7 = 4
√
2.

[TODO: Do we want the details below in the text?]

Properties of the configuration:

• the configuration should have at least 8 minimal surfaces, 7 around each
puncture and 8-th encompassing all punctures

• due to symmetries the three axes x, y, z of R3 are geodesics in the physical
metric. Therefore measuring the geodesic distance between two neighbour-
ing minimal surfaces should be straightforward: it suffices to find the one
around the puncture �N2 and �N3, determine where they intersect axis x
and calculate the geodesic distance between the intersection points along
the x axis.

6
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We have studied the 8-black-hole case and its full-GR evolution:



BLACK-HOLE LATTICES
THE 8-BLACK-HOLE UNIVERSE

Initial horizons:



Horizon evolution:
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Horizon evolution:
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Horizon properties:

 36
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• The horizon mass 
is essentially 
constant throughout 
the evolution;

• Coordinate effects 
render the horizons 
harder and harder 
to resolve as the 
run progresses;

• The central horizon 
exhibit a jump;
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Horizon properties:

• The horizon mass 
is essentially 
constant throughout 
the evolution;

• Coordinate effects 
render the horizons 
harder and harder 
to resolve as the 
run progresses;

• The central horizon 
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Harder and harder to resolve.
1) Outward shift: lack of resolution

2) Horizon instability;
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Harder and harder to resolve.
1) Outward shift: lack of resolution

2) Horizon instability;
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Proper distance between horizons
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Proper distance between horizons
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PART IV
INHOMOGENEOUS DUST

WITH MARCO BRUNI



INHOMOGENEOUS DUST
THE HYDRODYNAMICAL SYSTEM

From the conservation of the stress-energy tensor and the continuity equation, along with 
an equation of state, one can derive the PDE systems governing the evolution of rest-
mass density and four-velocity.



INHOMOGENEOUS DUST
THE CONSTRAINTS

As usual, initial data needs to solve the constraints:

Assume a pressureless perfect fluid:

then set       and         to the Einstein-deSitter solution and    to a perturbation of this 
solution:

Two runs:                     and                   (in units where                                    ).

Tab = ρuaub

γij Kij ρ

γij(t0) = δij

Kij(t0) = −HEdS(t0)γij

ρ(t0, x
i) = ρEdS(t0) + δi sin(2πkxix

i)

δi = 0.01δi = 0.001 ρEdS(t0) = 0.119366



INHOMOGENEOUS DUST
EVOLUTION OF THE DENSITY
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CONCLUSIONS AND PROSPECTS

Despite the large amount of proposals, type-Ia-supernova data remain 
unexplained.

It is time to quantify the effect of averaging on the cosmological 
parameters: numerical relativity can bridge the gap between exact models 
and averaging schemes.

We have barely started to scratch the surface:
• Better initial data:
• Generic solver;
• Beyond the conformal scheme?

• Better control on the gauge used for the evolution:
• Dust approximation leads to singularities, can these be avoided?

• More realism:
• S3 universes have an upper limit on the number of black holes — open three-

spaces will be more realistic;
• Scale span is tiny!


