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OVERVIEW

!
‣ MOTIVATIONS!

• Modelling cosmological inhomogeneities in a 
simple setting;!

• Studying the structure of initial data on 
periodic spaces;!

‣ HOW TO CONSTRUCT A PERIODIC 
BLACK-HOLE LATTICE!
• S3 lattices; !
• T3 lattices;!

‣ ANALYSING A PERIODIC BLACK-HOLE 
LATTICE!
• Length scaling!
• Observables!

‣ CONCLUSIONS



MODELLING INHOMOGENEITIES
THE COSMOLOGICAL CONSTANT PROBLEM

Contemporary datasets probing cosmological distances cannot be 
accomodated by the Friedmann-Lemaître-Robertson-Walker class unless 
a cosmological constant is present.!
!
Whilst the cosmological-constant term is perfectly plausible, its value is 
suspicious:!

• it’s too small for vacuum energy density;!
• it’s strangely close to the energy density due to matter.!

!
Solutions:!

• Quintessence;!
• Higher-derivative gravity and other alternative theories;!
• Quantum-inspired scenarios.!
!

!



THE FITTING PROBLEM

Is this really new physics?!
!
The fitting problem in cosmology (Ellis&Stoeger 1987): how should one 
map observations in a lumpy universe to exactly homogeneous and 
isotropic models, and what are the associated biases?!
!
Global inhomogeneities:!

• the cosmological principle is a reasonable, yet untestable ansatz.!
!
Local inhomogeneities:!

• modifications to global dynamics (the backreaction problem);!
• modifications to optical properties.!

!
Focus section on inhomogeneous cosmological models and averaging in 
cosmology in Classical and Quantum Gravity, August 2011.!
!
Two main approaches: exact solutions and averaging schemes.

MODELLING INHOMOGENEITIES



What is the metric tensor of the Universe?
!
!
!
!
!
ROAD II: how does one assemble a large-scale homogeneous space 
starting from inhomogeneous building blocks?

 !
!
ROAD I: how does one incorporate small-scale inhomogeneities in spaces 
that are homogeneous on larger scales?!
!
 

FROM SMALL SCALE TO LARGE SCALE

MODELLING INHOMOGENEITIES



10 kpc

s ≪ D

10 Gpc

s ≫ D

FROM SMALL SCALE TO LARGE SCALE

MODELLING INHOMOGENEITIES



STRATEGY
THE 3+1 DECOMPOSITION

In order to formulate Einstein’s equation as an initial-boundary value problem, one needs 
to choose a time coordinate and project the equations accordingly; reducing the system 
to first order form, one is left with twelve evolution four constraints equations:

na

ta Kij ⇥ �Ln�ij

�ij = gij + ninj

ta = �na + ⇥a



THE EINSTEIN CONSTRAINTS WITH PERIODIC BOUNDARY CONDITIONS

PERIODIC INITIAL DATA

What is the influence of periodic boundary conditions on the elliptic 
problem?!

• No solutions in Newtonian’s gravity!!
!
Under which conditions do solutions exist? [Choquet-Bruhat, Isenberg & 
Pollack 2007]!

• Integrability;!
!
How much freedom is there to choose the physical data? !

• Periodic boundary conditions are in a sense weaker than Dirichlet boundary 
conditions;!

• Extra free data has to be provided;!
!
What is the best numerical approach?!

• Which algorithms are most natural to integrate with the extra conditions?!
• How do the extra conditions affect the convergence of an algorithm [Elser, 

Rankenburg & Thibault 2006]?!



Models studied initially by Lindquist&Wheeler (1957). Since then, several roads:!
!
• Junction conditions [Clifton 2009]!
• Series expansions [Bruneton&Larena 2012]!
• Solving the constraints [Wheeler 1983, Clifton et al. 2012, Yoo et al. 2012, Bentivegna& 

Korzyński 2012, Yoo et al. 2013, Bentivegna&Korzyński 2013, Bentivegna 2014, 
Yoo&Okawa 2014]!

!
!
!
!
!

Abstract

1 Introduction

The vast amount of large-scale observational data collected in recent decades
are shaping a generally coherent picture of our universe. This evidence has,
however, also opened a number of questions, the majority of which are related
to the nature of the dark sector.

Along with more exotic hypotheses entailing new fundamental matter con-
stituents and modified theories of gravity, the possibility that the current way
we model the inhomogeneous universe be too elementary (a possibility that has
been advanced several times in the past) has now resurfaced. In particular,
the question of how much cosmic inhomogeneities can dress the value of the
cosmological parameters is under scrutiny in a variety of approaches.

An interesting class of models that has recently been studied is that of regu-
lar lattices of black holes. These representations of our universe avoid the issues
related to the behavior of relativistic fluids (and, in particular, the correspond-
ing singularities); in [], it is also argued that they may represent a more realistic
picture of our universe, composed of a collection of pointlike object surrounded
by vacuum rather than a homogeneous and isotropic fluid with small-scale per-
turbations.

Collections of black holes also have the added benefit to be one of numerical
relativity’s routine application areas, from which formalisms, tools and prac-
tices can be readily imported. In this work, we construct the initial data and
simulate the evolution of a special sort of black hole lattices, those with extrin-
sic curvature that is initially zero. In section 2, we illustrate how to construct
initial data for a generic black-hole lattice based on the usual York-Lichnerowitz
framework. We then discuss a coordinate transformation that simplifies the nu-
merical treatment in section 3, and finally illustrate the details of the evolution
in section ??.

[TODO: The usual definition of black hole involves Scri+. Is it legit to use the
word here, or should we just say puncture?]

2 Constructing a periodic black-hole lattice

Given the standard 3+1 split of the metric tensor into the spatial metric �ij and
extrinsic curvature Kij , initial data for the gravitational field can be generated
by solving the hamiltonian and momentum constraints, which in vacuum read:

R+K2 �KijK
ij = 0 (1)

DiK
i
j �DjK = 0 (2)

where R is the scalar curvature of the spatial metric and Di represents the
covariant derivative associated with �ij . A powerful scheme to generate solu-
tions of this system, the conformal transverse-traceless framework, entails the
introduction of a conformal transformation in the spatial metric, along with the

1

separation of the extrinsic curvature into its trace K and traceless part Aij :

�ij = ⌅4 �̃ij (3)

Kij =
K

3
�ij +Aij (4)

In terms of these, the constraints take the form:

�̃⌅ � R̃⌅ � K2

12
⌅5 +

1

8
ÃijÃ

ij⌅�7 = 0 (5)

D̃iÃ
ij � 2

3
⌅6�̃ijD̃iK = 0 (6)

�̃ being the laplacian operator of the conformal metric �̃ij , and Ãij being related
to Aij by Ãij = ⌅2Aij .

Let us focus on the hamiltonian constraint. We would like to solve this
equation with the “puncture” ansatz for the conformal factor:

⌅ =
M

r
(7)

[TODO: what is r?] and periodic boundary conditions. It can be easily proven,
then, that unlike in the asymptotically-flat case, if Kij and R are both zero,
then this is a slice of Minkowski spacetime. This becomes apparent if one
integrates both sides of equation 5 on the fundamental cell of the desired lattice
(see Figure ??):

0 =

⇤

V
�̃⌅ = �

⇤

Si

�̃⌅ +

⇤

So

�̃⌅ = �M (8)

which is only satisfied if M = 0. [TODO: I know this works if the metric is
conformally flat. Does it hold in general?]

Thus, for non-zeroM , there are at least two possibilities: a non-zero extrinsic
curvature or a non-zero spatial scalar curvature. In this work, we concentrate
on the Kij = 0 case, since the momentum constraint is trivally satisfied and the
hamiltonian constraint remains linear, and one can therefore construct multiple–
black-hole solution by superposition. We concentrate on the positive-R case,
where the spatial slices have the topology of S3. [TODO: In fact, they are
conformally S3. I think this is theorem, and we should cite it]

Notice that, whilst this argument strictly applies only to initial-data genera-
tion in the conformal transverse-traceless case, it is arguable that the additional
constraint due to the periodic requirement is quite a general feature.

2.1 Punctures on a 3–sphere

We consider puncture–like solutions of the hamiltonian constraint when �̃ij and
R̃ are the metric tensor and scalar curvature of S3:

�̃⌅ � R̃

8
⌅ = 0 (9)

We fix coordinates on S3 such that:

ds2 = d⇤2 + sin2 ⇤
�
d⇥2 + sin2 ⇥ d⇧2

⇥
(10)
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Further constraint: !
!
!
!
!
!
On an asymptotically flat space, the surface terms at 
infinity and around the punctures cancel: !
!
!
!
!
However, there is no surface term on the periodic 
boundaries. In a periodic space, the extrinsic curvature 
and the scalar curvature cannot both be zero! No time 
symmetric, spatially-flat solution (homogeneous dust 
models have the same properties)

BLACK-HOLE LATTICES
CONSTRUCTING A BLACK-HOLE LATTICE



Two options:

BLACK-HOLE LATTICES
CONSTRUCTING A BLACK-HOLE LATTICE
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(10)

2

• Keep a zero extrinsic curvature, 
but choose a conformal metric 
that is not flat [Wheeler 1983, 
Clifton et al. 2012]:!
!
!
!
!
!
Notes: !
1)Solutions only for positive 

scalar curvature (analogy to the 
FLRW class);!

2)The hamiltonian constraint is 
l inear ! One can use the 
superposit ion principle to 
construct mult i -black-hole 
solutions.!

!
• Keep a flat conformal metric, but 

use a non-zero extrinsic curvature 
[Yoo et al. 2012]:!
!
!
!
!
!
Requires:!
1)Numerical integration;!
2)Extreme care with periodic 

boundaries.

�� � K2

12
�5 = 0
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Hamiltonian constraint:!
!
!
!
!
!
Spatial metric given by:!
!
!
!
!
A solution:
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2

Let us imagine that the sphere is embedded in R4 with the equation
�
X1
⇥2

+
�
X2
⇥2

+
�
X3
⇥2

+
�
X4
⇥2

= 1; a bar over a capital letter denotes a vector in this
space.

A solution of equation 9 is given by:

⇤(�) =
A

sin�/2
(11)

and others can be easily generated by superimposing N such punctures centered
at the locations N̄i ⌅ S3:

⇤(X̄) =
N 

i=1

Ai

sin�i/2
=
 

i

Ai

⌦
2

1� X̄ · N̄i
(12)

The parameters Ai > 0 measure the singular part of the solution at the points
N̄i: the leading part behaves like 2Ai/�i.

Notice that, if one seeks only the regular arrangements of black holes on
S3, there are only six possible values of N , corresponding to the six regular
tessellations of the three-sphere: N = 5, 8, 16, 24, 120, 600.

In the following, we concentrate on the 8–vertex, 16-cell solution, where the
puncture locations are given by:

N̄1 = (1, 0, 0, 0) , (13)

N̄2 = (�1, 0, 0, 0) , (14)

N̄3 = (0, 1, 0, 0), (15)

N̄4 = (0,�1, 0, 0), (16)

N̄5 = (0, 0, 1, 0) , (17)

N̄6 = (0, 0,�1, 0) , (18)

N̄7 = (0, 0, 0, 1), (19)

N̄8 = (0, 0, 0,�1). (20)

and all Ai = 1. The configuration has obviously the symmetry of a 16–cell.
In particular, it has a discrete group of symmetries generated by ⇥/2 rotations
around all pairs of axes of R4.

1. rotation around X1, X4

⇤

⌥⌥⇧

X1

X2

X3

X4

⌅

��⌃ ⇧⇤

⇤

⌥⌥⇧

1 0 0 0
0 0 1 0
0 �1 0 0
0 0 0 1

⌅

��⌃

⇤

⌥⌥⇧

X1

X2

X3

X4

⌅

��⌃ (21)

⇤

⇧
y1

y2

y3

⌅

⌃ ⇧⇤

⇤

⇧
1 0 0
0 0 1
0 �1 0

⌅

⌃

⇤

⇧
y1

y2

y3

⌅

⌃ (22)

2. rotation around X2, X4

⇤

⌥⌥⇧

X1

X2

X3

X4

⌅

��⌃ ⇧⇤

⇤

⌥⌥⇧

0 0 1 0
0 1 0 0

�1 0 0 0
0 0 0 1

⌅

��⌃

⇤

⌥⌥⇧

X1

X2

X3

X4

⌅

��⌃ (23)
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⇥ 2 [0,⇤]

� 2 [0,⇤]

⌅ 2 [0, 2⇤]



Multiple black holes can be obtained by superimposing this fundamental solution. It is 
convenient to embed this three-sphere in R4, and to express the solution in this 
coordinate space:!
!
!
!
!
!
!
The parameters       and the black-hole centers are arbitrary, but if one is interested in 
regular lattices these have to be chosen carefully. In particular, the parameters      have to 
be the same, and the centers have to be equidistant from each other.
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In particular, it has a discrete group of symmetries generated by ⇥/2 rotations
around all pairs of axes of R4.
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2. rotation around X2, X4

⇤
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⌅
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Ai
Ai

Curious cases:

ds2 = 1
sin4 �

2

�
d⇥2 + sin2 ⇥

�
d�2 + sin2 � d⇤2

��

ds2 = ( 1
sin �

2

+ 1
sin ��⇡

2

)4
�
d⇥2 + sin2 ⇥

�
d�2 + sin2 � d⇤2

��

N = 1

N = 2
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On a three-sphere, there is only a finite number of “regular” arrangements of points, 
corresponding to the regular tessellations of S3. N can be equal to 5, 8, 16, 24, 120, 600.

THE REGULAR TESSELLATIONS OF S3
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THE REGULAR TESSELLATIONS OF S3
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Coordinate transformation to simplify numerical treatment:

A STEREOGRAPHIC PROJECTION FROM S3 ONTO R3

xi

Xi

(X1
, X

2
, X

3
, X

4) ! (x1
, x

2
, x

3) : xi =
2Xi

1�X

4
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A STEREOGRAPHIC PROJECTION FROM S3 ONTO R3

Brill-Lindquist initial data!
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new coordinates �y = (A1)2 �x. The projected conformal factor takes now the form
of

�̃(�y) = 1 +
N⇥

i=2

2Ai A1

⇤
1 + | ⇤Ni|2

4����y � �Ni

���
= (42)

= 1 +
N⇥

i=2

mi

2
����y � �Ni

���
(43)

with rescaled positions of the punctures �Ni = (A1)2 �ni. The mass parameters
of the punctures take the form of

mi = 4Ai A1

⇧

1 +
| �Ni|2
4

. (44)

The total ADM mass measured at infinity, corresponding to the infinity of
the black hole N̄1, is equal to

MADM
1 =

N⇥

i=2

mi = 4A1

N⇥

i=2

Ai

⇧

1 +
| �Ni|2
4

. (45)

It can also be expressed in terms of the original solution �:

MADM
1 = 4A1

N⇥

i=1

Ai

⌅
2

1� N̄i · N̄1
(46)

If we project the 8–vertex solution 13 down to R3, it becomes an asymptot-
icaly flat configuration described by (43) with 7 punctures at points

�N2 = (0, 0, 0) , (47)

�N3 = (2, 0, 0), (48)

�N4 = (�2, 0, 0), (49)

�N5 = (0, 2, 0) , (50)

�N6 = (0,�2, 0) , (51)

�N7 = (0, 0, 2), (52)

�N8 = (0, 0,�2). (53)

and with mass parameters m2 = 4 and m3, . . . ,m7 = 4
⌃
2.

[TODO: Do we want the details below in the text?]
Properties of the configuration:

• the configuration should have at least 8 minimal surfaces, 7 around each
puncture and 8-th encompassing all punctures

• due to symmetries the three axes x, y, z of R3 are geodesics in the physical
metric. Therefore measuring the geodesic distance between two neighbour-
ing minimal surfaces should be straightforward: it su⇤ces to find the one
around the puncture �N2 and �N3, determine where they intersect axis x
and calculate the geodesic distance between the intersection points along
the x axis.

6

THE 8-BLACK-HOLE UNIVERSE

We have studied the 8-black-hole case and its full-GR evolution:
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THE 8-BLACK-HOLE UNIVERSE

Initial horizons (the outermost surface is inner trapped!):
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THE 8-BLACK-HOLE UNIVERSE

For a fair comparison with the FLRW class, one needs to elect some measure of (proper) 
distance, and measure its scaling in proper time.
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THE 8-BLACK-HOLE UNIVERSE
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!
!
!
!
!
!
!
!
!
!
!
!

• In this case, the conformal-data part of the ID plays a rather decisive 
role in its evolution. Is this always the case?!

!

!
!
!
!
!
!

• The density parameter, however, appears dressed by the 
inhomogeneities.!
!
!
!

!

!
!

• The large-scale behavior of the system is just that of a homogeneous 
space filled with dust. (Even if the inhomogeneities are relatively large-
scale!)!

THE 8-BLACK-HOLE UNIVERSE
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Hamiltonian constraint:!
!
!
!
!
!
It requires numerical integration. If      is not a spatial constant or         is not transverse, the 
momentum constraint has to be solved as well. In all cases, the solution has to include a 
mechanism to preserve the integrability condition (see Part IV).!
!
In this case, the constraint takes the form:!
!
!
!
!
This has to be enforced iteratively since it depends on the unknown conformal factor (and 
potentially on the extrinsic curvature). If this condition is not satisfied, the system does not 
admit solutions (“singular”)! The extent to which one can reduce the equation residual 
depends strongly on how well we can satisfy the compatibility condition.
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A prescription: Yoo et al. (2012) construct an initial-data slice that is asymptotically 
Schwarzschild (in the static slicing) next to the center, and asymptotically CMC (with a 
negative mean curvature) next to the cell faces.!
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CONCLUSIONS

• Building blocks cannot be assembled arbitrarily.!

• The conditions for the existence of a periodic black-hole lattice 
reproduce some of the features of the FLRW class (in particular, the 
time-symmetry vs. topology relationship). Their kinematical behavior is 
also remains close to the FLRW counterpart.!

• Is this the full story?!

• This is just one of the current applications of Numerical Relativity. Check 
out “Exploring New Physics Frontiers Through Numerical Relativity”, 
upcoming Living Review in Relativity, arXiv:1409.0014.


